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The authors study the Ising model on the triangular lattice with nearest-neighbor couplingsKnn, next-
nearest-neighbor couplingsKnnn.0, and a magnetic fieldH. This work is done by means of finite-size scaling
of numerical results of transfer matrix calculations, and Monte Carlo simulations. We determine the phase
diagram and confirm the character of the critical manifolds. The emphasis of this work is on the antiferromag-
netic caseKnn,0, but we also explore the ferromagnetic regimeKnnù0 for H=0. ForKnn,0 andH=0 we
locate a critical phase presumably covering the whole range −`,Knn,0. ForKnn,0, HÞ0 we locate a plane
of phase transitions containing a line of tricritical three-state Potts transitions. In the limitH→` this line leads
to a tricritical model of hard hexagons with an attractive next-nearest-neighbor potential.
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I. INTRODUCTION

The Ising model on the triangular lattice with nearest-
neighbor couplingsKnn, next-nearest-neighbor couplings
Knnn, and a magnetic fieldH, is defined by the reduced
Hamiltonian

H/kBT = − Knno
knnl

sisj − Knnno
fnnng

sksl − Ho
m

sm, s1d

wheresi = ±1, andknnl and [nnn] indicate summations over
all pairs of nearest neighbors and of next-nearest neighbors,
respectively, as illustrated in Fig. 1.

This model, in particular the antiferromagnetic model
sKnn,0d, displays interesting behavior. ForKnnn=0, H=0
the model has been solved exactly[1]. A ferromagnetic tran-
sition occurs atKnn= lns3d /4. An antiferromagneticsKnn,0d
mirror image of this transition is absent. This is related to the
fact that the triangular lattice is not bipartite. However, at
zero temperature, i.e., forKnn→−`, the model displays a
critical phase with algebraically decaying correlations[2].
This zero-temperature model can be exactly mapped on a
solid-on-solid(SOS) model [3]. Under renormalization, it is
assumed to map on the Gaussian model[4] and on the re-
lated Coulomb gas[5]. The coupling constantgR of the Cou-
lomb gas can thus be obtained exactly asgR=2 so that a
number of critical exponents can be calculated. The Ising
temperatureT~−Knn

−1 appears to berelevant: the critical state
is destroyed for allT.0. Commensurate-incommensurate
transitions occur when finite differences between the infinite
nearest-neighbor couplings in the three lattice directions are
introduced[3,4].

Next we consider the case ofH=0 andKnnnÞ0. The map-
ping on the SOS model(and we may also assume this for the
Coulomb gas) is still valid for Knn→−` but, in the absence
of an exact solution,gR is no longer exactly known. It has,
however, been deduced[4] that gR is an increasing function
of Knnn. The Coulomb gas analysis predicts that, for suffi-
ciently largegR, the Ising temperature becomes irrelevant, so
that the algebraic phase extends to nonzero temperatures.

This analysis also predicts that for even largergR a phase
transition to a flat SOS phase occurs, both at zero and at
nonzero temperatures.

Somewhat earlier, part of this scenario had already been
described by Landau[6]. Via the lattice-gas representation of
Eq. (1), he used the connection with theXY model in the
presence of a six-state clocklike perturbation, made earlier
by Domanyet al. [7]. He could thus make use of their results
[7] for this model which allow for the existence of a critical,
XY-like phase in a nonzero rangeKnn.0. Furthermore, Lan-
dau[6] used the Monte Carlo method to verify the existence
and nonuniversal character of this critical phase for the case
of a fixed ratioKnnn/Knn=−1.

Another tool to study the model with nonzero next-
nearest-neighbor couplingsKnnn is provided by the transfer-
matrix technique. A simplification has been used in the latter
approach:Knnn was taken to be nonzero only for four out of
the six next-nearest neighbors[8–10]. This leads to a sub-
stantial simplification of the transfer matrix calculations, but

FIG. 1. The triangular lattice with nearest-neighbor couplings
Knn, next-nearest-neighbor couplingsKnnn (examples of which are
shown as bold bonds), and a fieldH (bold circle). The lattice is
divided into three sublattices labeled 1, 2, and 3.
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the resulting system lacks isotropy, so that applications of
conformal mappings become difficult. On this basis, limited
evidence[10] for the existence of the critical phase was re-
ported; the limitation of this evidence is obviously related to
the lack of sixfold symmetry.

Next we consider the consequences of a nonzero field
H.0. On the basis of the relation with the Coulomb gas it
has been derived[4] that, for Knn→−` and Knnn=0, the
magnetic fieldH is irrelevant: the critical state is not de-
stroyed by a sufficiently small fieldHÞ0. However, the
magnetic field tends to increase the Coulomb gas coupling
constantgR. The field will become marginally relevant at
gR=9/4 and atransition of the Kosterlitz-Thouless(KT) type
or, in this context more appropriate, of the roughening type is
thus expected. This transition separates the critical phase
from a long-range ordered phase, where the majority of the
minus-spins have condensed on one of the three sublattices
of the triangular lattice. This prediction has been confirmed
[11,12] by means of numerical methods. The long-range or-
dered phase extends to nonzero temperatureT.0 and is
separated from the disordered phase by a line of phase tran-
sitions in thesH ,Td plane that belongs to the three-state Potts
universality class[12–16].

Since the Ising model in a field can be mapped on a vertex
model, and the critical manifolds of solvable vertex models
are described by the zeroes of simple polynomials in the
vertex weights[17], it may be assumed that also for the
triangular lattice the critical line in thesH ,Td is described by
such a polynomial. This assumption was recently refuted by
Qian et al. [12]. The shape of the critical line, as deduced
from this assumption, was found to be inconsistent with the
numerical evidence. They also found that the renormalization
ideas originally outlined by Nienhuiset al. [4] could be ap-
plied to predict the shape of the critical line in thesH ,Td
plane for smallT. This shape was found to be consistent with
their numerical data for the critical line.

The aforementioned three-state Potts-type critical line is
naturally part of a critical surface extending to nonzeroKnnn.
The more involved problem to find the phase diagram in the
three-parameter(H, Knnn, Knn) space has already been partly
explored. On the basis of renormalization arguments, Nien-
huis et al. [4] obtained information about the shape of the
critical surface in the limitH→0. Landau[6] performed
Monte Carlo simulations for a fixed ratioKnnn/Knn=−1. He
determined the line of phase transitions as a function ofH
and noted that the three-state Potts character along this line
changes at a tricritical point beyond which the transition
turns first order.

In this work we verify the predictions in Ref.[4] and
determine the critical values ofKnnn corresponding to several
relevant values of the Coulomb gas coupling constantgR,
both for finite and infiniteKnn. We verify the character of the
predicted critical phase atH=0. We also study the critical
phenomena associated with the introduction of a nonzero
magnetic field and explore the full three-parameter phase
diagram forKnnnù0.

This paper is organized as follows. In Sec. II, we summa-
rize our numerical methods which include Monte Carlo al-
gorithhms and the construction of a transfer matrix. We de-
fine the observables that will be the subject of our numerical

analysis. The study of the phase transitions of the triangular
Ising model with nearest- and next-nearest-neighbor cou-
plings in a zero field is presented in Sec. III, and in Sec. IV
we describe our results for a nonzero magnetic field; we
conclude with a discussion in Sec. V.

II. NUMERICAL METHODS

A. Transfer-matrix calculations

Most of the the transfer-matrix calculations were per-
formed forT.0 so that we had to use a binary representa-
tion for the Ising spins, leading to a transfer matrix of size
2L32L for a system with finite sizeL. For T=0 one can use
a simplified transfer matrix of a smaller size[11]. We define
the spin lattice on the surface of a cylinder, and take the
transfer direction perpendicular to a set of nearest-neighbor
edges. The lattice is divided into three sublattices denoted as
1, 2, and 3, respectively, as shown in Fig. 1. Nearest-
neighbor interactions occur only between different sublat-
tices and next-nearest-neighbor interactions occur within the
same sublattice.

To enable calculations for system as large as possible, a
sparse matrix decomposition has been used. This leads to a
very significant reduction of the required computer time and
memory. The transfer matrices are defined in Refs.[11,12]
for the nearest-neighbor model. Here we modify the transfer
matrix to include all next-nearest-neighbor interactions. This
makes it necessary to code two(instead of one) layers of
spins as the transfer matrix index. Finite-size calculations
with L multiples of 6 up toL=24 were performed. The maxi-
mum finite sizeL=24 corresponds to a cylinder with a cir-
cumference of only 12 nearest-neighbor bonds.

The magnetic correlation function along the coordinater
in the length direction of the cylinder is defined as

gmsrd = ks0srl. s2d

At large r, this correlation function decays exponentially
with a characteristic length scalejm that depends onKnn,
Knnn, H, andL

gmsrd ~ e−r/jmsKnn,Knnn,H,Ld s3d

which can be calculated from the largest two eigenvaluesl0
andl1 of the transfer matrix,

jm
−1sKnn,Knnn,H,Ld =

1

2Î3
lnsl0/l1d, s4d

where the factor 2Î3 is a geometric factor for two layers of
spins. For the calculation ofjm, we make use of the symme-
try of the eigenvectors associated withl0 andl1. The lead-
ing eigenvector(for l0) is invariant under a spatial inversion.
In contrast, the second eigenvector is antisymmetric under
inversion.

The theory of conformal invariance[18] relatesjm on the
cylinder with the magnetic scaling dimensionXm (one-half of
the magnetic correlation function exponenth). This expo-
nent may be estimated as
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XmsKnn,Knnn,H,Ld =
L

2pjmsKnn,Knnn,H,Ld
. s5d

Asymptotically for a critical model with largeL we have

XmsKnn,Knnn,H,Ld . Xm, s6d

where Xm=1/s2gRd in the language of Coulomb gas. This
equation allows us to estimateXm numerically and thus to
obtain evidence about the universality class of the model. Or,
if the universality class, and thusXm, are considered known,
Eq. (6) can be used to determine the critical surface, e.g., to
solve forKnnn for given values ofKnn, H, andL. As a con-
sequence of corrections to scaling, the solution will not pre-
cisely coincide with the critical point. The effects of an irrel-
evant scaling fieldu and a small deviationt with respect to
the critical value ofKnn, or Knnn, or H are expressed by

XmsKnn,Knnn,H,Ld = Xm + auLyi + btLyt + ¯ , s7d

wherea andb are unknown constants,yi is irrelevant expo-
nent andyt is temperature exponent. For the solution of the
equationXmsKnn,Knnn,H ,Ld=Xm we thus haveauLyi +btLyt

<0, so that we expect corrections proportional toLyi−yt in the
critical point estimates. For instance, for three-state Potts
universality one hasyt=6/5 andyi =−4/5 so that the leading
finite-size dependence of the estimated critical points is as
L−2. This knowledge is helpful for the extrapolation to the
actualL=` critical point.

In addition to jm, it is possible to determine a second
correlation lengthjt describing the exponential decay of the
energy-energy correlation function. It is associated with a
third eigenvaluel2 of the transfer matrix with an eigenvector
that is symmetric under a spatial inversion, just as the one
with eigenvaluel0. The pertinent eigenvalue is thus solved
by means of orthogonalization with respect to the first eigen-
vector. In analogy with the case of the magnetic correlation
length we can use the third eigenvaluel2 to estimate the
temperaturelike scaling dimensionXt as

XtsKnn,Knnn,H,Ld =
L

2pjtsKnn,Knnn,H,Ld
, s8d

where jt=s1/2Î3dlnsl0/l2d. At criticality, it behaves for
largeL as

XtsKnn,Knnn,H,Ld . Xt. s9d

Combining Eqs.(6) and(9), we can solve for two unknowns
simultaneously, using the known[5] values of the tricritical
three-state Potts model, namelyXm=2/21 andXt=2/7. In
this way, we can estimate the tricritical pointsKnnn,Knnd for a
givenH. The corrections can be argued to be proportional to
Lyi−yt2 whereyt2=4/7 andyi =−10/7, i.e., the corrections de-
cay asL−2.

B. Monte Carlo simulations

Since transfer-matrix calculations are, although highly ac-
curate, restricted to small systems, we have also written
Monte Carlo algorithms for the present model. To obtain
good statistical accuracies we included not only a Metropolis

algorithm, but also a Wolff and a geometric cluster algo-
rithm. Which algorithm is used depends on the location in
the phase diagram. The Wolff algorithm is applicable in only
the case of zero magnetic field. The geometric algorithm[19]
conserves the magnetization and was therefore used in com-
bination with the Metropolis algorithm. This combination
was found to work faster than the Metropolis method, but the
gain in efficiency depends on the position in the three-
parameter space.

Several quantities were sampled using these algorithms in
order to explore the phase diagram. First we define the uni-
form magnetization asm;L−2oksk which tends to ±1/3 in
the long-range ordered antiferromagnetic or flat phases, and
to zero in the disordered(paramagnetic) phase. From its mo-
ments we define the magnetic Binder ratio as

Qm =
km2l2

km4l
. s10d

Next, we consider the three-state Potts-type order parameter
or, in the language of the present Ising model, the three sub-
lattice magnetizations. We denote the magnetization density
of sublatticei (i =1, 2, or 3) asmi. On the basis of the stag-
gered magnetizations we write the variance of the Potts order
parameter as

ms
2 = m1

2 + m2
2 + m3

2 − m1m2 − m2m3 − m3m1 s11d

and the corresponding dimensionless ratio as

Qs =
kms

2l2

kms
4l

. s12d

At criticality, the quantitiesQm and Qs scale as a constant
plus irrelevant corrections, i.e., they converge to a constant
asL increases. This property can be used for the determina-
tion of critical points.

III. NUMERICAL RESULTS FOR ZERO FIELD

We restrict this work to ferromagnetic next-nearest-
neighbor interactionssKnnn.0d. First, we consider the Ising
model in a zero fieldsH=0d, and study the phase diagram in
sKnnn,Knnd plane. We distinguish the casesKnn.0 and
Knn,0.

A. Results for the ferromagnetic transition „Knn.0…

For the Ising model we haveXm=1/8 sothat at criticality
we expect that asymptotically for largeL

XmsKnn,Knnn,0,Ld . 1
8 s13d

from which one can estimate critical points, e.g., by solving
for Knnn at a given value ofKnn or vice versa. In certain
cases, critical points can be determined accurately by ex-
trapolating toL=`. For instance, forKnnn=0 we obtain the
critical value of the nearest-neighbor couplingKnn
=0.274 652 8s10d, which is consistent with the exact result
Knn= lns3d /4. The results are shown in Fig. 2.

We also checked that, at the decoupling pointsKnn=0d the
critical value of the next-nearest-neighbor couplingKnnn
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equals the exact value lns3d /4. The three sublattices, which
are also triangular lattices, become independent at the decou-
pling point.

B. Results for the antiferromagnetic region„Knn,0…

At finite Knn,0 and smallKnnn.0, the model is obvi-
ously disordered. As described in the Introduction, with in-
creasing Knnn the model is expected to undergo(1) a
Kosterlitz-Thouless transition to a critical phase at the point
where the Coulomb gas coupling readsgR=4, and the corre-
sponding value of the magnetic dimension isXm=1/s2gRd
=1/8; (2) a roughening transition to a flat phase, and the
corresponding value of the magnetic dimension is thusXm
=1/18 atgR=9. We have solvedKnnn from Eq. (6) for these
two values ofXm, at several fixed values ofKnn. The results
were extrapolated toL=` by means of three-point fits in-
volving a constant(the estimated value ofKnnn) plus a finite-
size correction involving a free exponent. The final estimates
are included in the phase diagram, Fig. 2. They suggest that
the two boundaries of the critical phase merge at the decou-
pling point Knn=0. Our numerical results include a few spe-
cial points at zero temperaturesKnn→−`d. In the renormal-
ization scenario, their meaning is as follows:

(1) For gR=9/4 weobtainKnnn=0.0185s4d. This is where
the line of roughening transitions in thesKnnn,Hd plane
meets theKnnn axis.

(2) For gR=3 we obtainKnnn=0.0667s2d. This is where
the line of three-state Potts transitions in the plane perpen-
dicular to theKnnn axis comes in as a straight line with a
nonzero, finite slope as argued in Ref.[12].

(3) For gR=4 we obtainKnnn=0.1179s2d. This is where
the KT-like line in thesKnnn,Knnd plane meets theKnnn axis.

(4) For gR=9 we obtainKnnn=0.226s2d. This is where the
line of roughening transitions in thesKnnn,Knnd plane meets
the Knnn axis. This point corresponds with an actual phase
transition on theKnnn axis. We note that, in cases(1) and(3),
the Knnn axis meets with other lines of phase transitions.
However, phase transitions do not occur at points(1) and(3)
because the critical amplitudes vanish on theKnnn axis.

C. Shape of the critical lines for small zKnnz

On the basis of an argument due to van Leeuwen[20], the
scaling behavior ofKnn near the decoupling pointsKnnn

= lns3d /4 , Knn=0d, is governed by a new critical exponent
ya=7/4. This exponent thus determines the shape of the
critical lines for smalluKnnu according to

Knn ~ S ln 3

4
− KnnnD7/4

. s14d

One can find the critical exponentya exactly from the
known properties of the magnetic correlation function of the
critical Ising model. The spin-spin correlation behaves as

gmsrd ~ r−2Xm,

whereXm=1/8 for the 2DIsing model. This also applies to
the decoupling point where the model decomposes in three
independent sublattices. This determines the scaling behavior
of a four-spin correlation function involving spins in differ-
ent sublattices in the limit ofKnnn→0

gasrd = ks00s01sr0sr1l = fgmsrdg2 ~ r−4Xm, s15d

where s00 and s01 are nearest-neighbor spins belonging to
different sublattices, say sublattices 1 and 2. The same ap-
plies to the pairssr0, sr1d at a distancer. Equation(15) de-
scribes the energy-energy correlation associated withKnn. Its
power-law decay is thus expressed by

gasrd ~ r−2Xa, s16d

where Xa is the scaling dimension of the nearest-neighbor
energy density. Comparing Eq.(15) and Eq.(16), we con-
clude thatXa=2Xm=1/4 andya=7/4.

We verify Eq. (14) by plotting Knn versus flns3d /4
−Knnng7/4 for the ferromagnetic critical line in Fig. 3, and for
the two lines containing the algebraic phase in the antiferro-
magnetic region in Fig. 4. In all these cases we find approxi-
mate linear behavior near the decoupling point which con-
firms the predicted value ofya.

D. The algebraic phase

The renormalization scenario predicts that, in the alge-
braic phase the estimates ofXm, as obtained from Eq.(5),
will converge to aKnnn-dependent limit when the finite sizeL
increases. However, in the disordered and flat phases, the
system will renormalize away from the nonuniversal fixed
line, and the data forXm are therefore predicted to fan out for
different values ofL. We calculatedXm by solving Eq.(6) in

FIG. 2. Three lines of phase transitions in the(Knnn, Knn) plane.
The numerically determined data points are shown as circles. The
upper line displays the ferromagnetic critical line forKnn.0. For
Knn,0 there are two more lines which represent the boundaries of
a critical phase which resembles the low-temperature phase of the
XY model. The two lines appear to meet at a single point, the
decoupling point, atKnn=0. The right-hand critical line marks a
roughening transition to a flat SOS phase, the left-hand line a KT-
like transition between the disordered and the critical phases. The
numerical errors in the ferromagnetic region are much smaller than
the size of the symbols; for the remaining data they are difficult to
estimate but believed to be at most of the same order as the symbol
size.
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a suitable range ofKnnn at fixed values ofKnn, namelyKnn
=−`, −0.6, −0.4, −0.2, and −0.1. These results confirm the
renormalization predictions, as illustrated in Figs. 5 and 6.
Figure 5 shows that, forKnn=−` and H=0, the data ofXm
converge to aKnnn-dependent constant in a range ofKnnn
from zero toKnnn=0.226s2d as determined above. This con-
firms that forH=0, Knn=−` the system indeed remains criti-
cal until Knnn induces a transition to a flat phase. In contrast,
Fig. 6 indicates that for nonzero temperature the critical
phase starts at a positive value ofKnnn. Figure 7 shows the
inverse ofXm and provides a clearer picture of the transition
at the largeKnnn side. We have numerically calculated the
average slopesSL of the finite-size curves in intervals speci-
fied in Table I, and fit them as follows:

SL = S̀ + aLyc + ¯ , s17d

where S̀ is constant, andyc denotes the exponent of the
leading finite-size correction. Results listed in Table I indi-

cate that the finite-size dependence of the slopes is governed
by anegativeexponentyc of L, which indicates that the slope
SL converges to a constant forL→`, as expected in the
critical range.

In order to provide independent confirmation of the alge-
braic phase, we also used the Monte Carlo method. Simula-
tions were done forL3L systems of sizeL=24, 36, 48, and
60. Examples of the results forQs andQm are given in Figs.
8 and 9, respectively, as a function ofKnnn, for Knn=−0.2.
These data behave similarly as those forXm, and show good
apparent convergence to a nonuniversal,Knnn-dependent con-
stant in the pertinent range. Note that the curves forQs dis-
play intersections nearKnnn<0.207, and those forQm near
Knnn<0.245, apparently at different sides of the algebraic
phase as shown in Fig. 2. We interpret these intersections,
i.e., solutions of Eq.(6) coinciding for differentL, as the
cancellation of the leading twoL-dependent terms. Such

FIG. 3. The ferromagnetic critical line, plotted asKnn versus
flns3d /4−Knnng7/4. The approximate linear behavior confirms that
the exponentya associated withKnn obeys the theoretical prediction
ya=7/4. Theestimated errors are smaller than the symbol size.

FIG. 4. AntiferromagneticsKnn,0d critical lines near the de-
coupling point. The numerical results(circles) are plotted asKnn

versusflns3d /4−Knnng7/4. The approximate linear behavior at small
uKnnu confirms that the exponent associated with the scaling ofKnn

obeys the theoretical predictionya=7/4. Theestimated errors in the
data points are at most of the same order as the symbol size.

FIG. 5. Finite-size estimates of the magnetic scaling dimension
Xm versus next-nearest-neighbor couplingKnnn at Knn=−`. For
clarity we include four lines connecting data points for system sizes
L=6, 12, 18, 24, respectively. The dashed line indicates the special
valueXm=1/18, and the black triangle shows the estimated critical
value ofKnnn for Knn→−`.

FIG. 6. Finite-size estimates ofXm versus Knnn at Knn

=−0.6. For clarity we include four lines connecting data points for
system sizesL=6, 12, 18, 24, respectively. The dotted and dashed
lines indicate the special valuesXm=1/8 andXm=1/18, respec-
tively. The two black triangles show the estimated critical values of
Knnn at Knn=−0.6.

TRIANGULAR ISING MODEL WITH NEAREST- AND… PHYSICAL REVIEW E 70, 036112(2004)

036112-5



terms are likely associated with(1) the corrections as natu-
rally associated with irrelevant fields in the algebraic phase;
and (2) the fanning-out phenomenon mentioned above. It
appears that the first types of corrections inQs andQm are of
a different sign.

IV. RESULTS FOR NONZERO FIELD

In view of the Ising character of(1), we restrict ourselves
to Hù0 without loss of generality. The phase diagram with-
out next-nearest-neighbor interactions, i.e., in thesH ,Knnd
plane has already been determined by Qianet al. [12], with
special emphasis on the limitKnn→−`. In that limit, a
roughening-type transition is located[11,12] nearH=0.266.
As mentioned above, the algebraic phase becomes less stable
against perturbation byH whenKnnn increases, and the alge-
braic phase in thesKnnn,Hd plane shrinks to zero atgR

=9/4 which corresponds, as mentioned above, toKnnn
=0.0185.

The line connecting the two pointssKnnn,Hd=s0,0.266d
and (0.0185,0) is a line of roughening transitions separating
the algebraic and the ordered phases. The renormalization

description implies that this line is a straight line when ex-
pressed in the scaling fields. In view of the proximity of both
numerically determined points, we expect an almost straight
line in thesKnnn,Hd plane. The connection of the three-state
Potts transition line and the roughening transition point in
sH ,Knnd plane has been analytically investigated by Qianet
al. using renormalization arguments. Their analysis indicates
that the roughening transition atH=0.266 is the end point of
the Potts transition line insH ,Knnd plane forT↓0. Their re-
sult applies similarly to other points on the line of roughen-
ing transitions. We thus believe that this whole line serves as
a frontier of the Potts critical surface, as well as the part of
the Knnn axis with gR between 9/4 and 4 as determined in
Sec. III A.

Since three-state Potts universality impliesXm=2/15 at
criticality, we expect that asymptotically for largeL,

TABLE I. Fitted results for the extrapolated average slopeS̀
<dXm/dKnnn in the algebraic phase. The last column shows the
exponentyc of finite-size correction. The increase ofuS̀ u with Knnn

corresponds with the narrowing of the algebraic phase when the
decoupling pointKnn=0 is approached. The intervals ofKnnn in
which the average slopes are calculated are listed in the second
column.

Knn Knnn S̀ yc

−` 0.18–0.20 −0.59(3) −1.1 (2)

−0.6 0.18–0.20 −0.78(2) −1.2 (2)

−0.4 0.18–0.22 −1.20(8) −0.7 (2)

−0.2 0.21–0.22 −3.3 (5) −0.3 (1)

−0.1 0.23–0.25 −5.0(10) −0.2 (1)

FIG. 7. Finite-size estimates of the inverse magnetic scaling
dimensionXm

−1 versus next-nearest-neighbor couplingKnnn at Knn

=−0.6. The meaning of the lines and symbols are the same as in
Fig. 6. The phase transition to flat phase is clearly visible in this
figure.

FIG. 8. Dimensionless amplitude ratioQs versusKnnn at Knn

=−0.2. Intersections are found to occur near the transition point
between the disordered and the algebraic phases. The four lines
connecting the data points represent, with increasing slope, system
sizesL=24, 36, 48, and 60, respectively. The numerical uncertainty
margins are much smaller than the size of the data points.

FIG. 9. Dimensionless amplitude ratioQm versusKnnn at Knn

=−0.2. Intersections are found to occur near the transition point
between the algebraic and the flat SOS phases. The four lines con-
necting the data points represent, with increasing slope, system
sizesL=24, 36, 48, and 60, respectively. The numerical uncertainty
margins are much smaller than the size of the data points.
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XmsKnn,Knnn,H,Ld . 2
15 s18d

from which one can estimate critical points by solving for
one of the three variablessKnn,Knnn,Hd for specified values
of the other two, and subsequent extrapolation toL=`. We
thus calculated critical points on several lines at fixed values
of H. The results are shown as lines connecting these points
in Fig. 10. In order to zoom in on the connection of the
three-state Potts transition surface and the transition lines in
the sKnnn,Knnd plane, we have also estimated critical values
of H at fixed values ofKnn, for a suitably chosen range of
Knnn. Results forKnn=−0.8,−0.1,−0.15 are included in Fig.
10. They fit well with the qualitative predictions for the
shape of the critical surface[4] for smallH. Furthermore, our
data for the critical points atKnnn=0.0667, corresponding
with gr =3, agree with the linear behavior as mentioned in
Sec. III A.

Our results confirm that, when the next-nearest-neighbor
coupling Knnn becomes sufficiently strong, the transition
from the disordered phase to the ordered phase changes char-
acter at a tricritical line, beyond which the transition turns
first order. We have located the tricritical line using transfer-
matrix calculations. By solving Eqs.(6) and (9) simulta-
neously forKnn andKnnn at specified values ofH, we obtain

results shown in Table II, and included in Fig. 10. In com-
parison with transfer-matrix calculations involving onlyXm,
the memory requirements are somewhat larger. As a conse-
quence only three values ofL up to 18 could be used. But we
found that finite-size corrections are relatively small, and we
are confident that the tricritical line is well determined.

For sufficiently large fieldsH, triangles may contain at
most one minus-spin and the tricritical line approaches a
tricritical lattice-gas limit. In this limit the nearest-neighbor
coupling and the field satisfy a linear relation

Knn = −
H

6
+ C. s19d

As illustrated in Fig. 11, the numerical data fit this expres-
sion well, except at smallH. In order to obtain a satisfactory
fit to the numerical data forHù1, we added terms propor-
tional to e−2H/3 and e−4H/3 to Eq. (19). This fit yielded C
=−0.014 81s5d. A similar fit without a term proportional toH
yieldedKnnn=0.235 14s7d for the tricritical lattice gas limit.

We have used Monte Carlo simulations to determine the
location of the sheet of first-order transitions atKnnn=0.3. We
found that, depending onKnn andH, a randomly initialized
system evolved to a phase either largely magnetized, or re-
sembling one of the three ordered Potts states. The threshold

TABLE II. Tricritical points as obtained by the transfer matrix
method for several values ofH. The decoupling pointKnn=0 is
included here as the end point of the tricritical line, although it does
itself not belong to the tricritical three-state Potts universality class.

H Knn Knnn

0.00 0.0000 (0) lns3d /4 (0)

0.05 −0.0107(12) 0.269 (1)

0.10 −0.0214(10) 0.2654 (5)

0.5 −0.0937 (5) 0.2572 (5)

1.0 −0.1799 (2) 0.2500 (2)

1.5 −0.2644 (2) 0.2452 (2)

2.0 −0.3481 (2) 0.2421 (2)

3.0 −0.5150 (1) 0.23845(8)

4.0 −0.6816 (1) 0.23678(8)

5.0 −0.84823(5) 0.23599(8)

6.0 −1.01487(5) 0.23560(8)

FIG. 10. The complete phase diagram in the
three-parameter spacesH ,Knnn,e

2Knnd. The solid
lines denote second-order phase transitions, and
the heavy dotted line is the tricritical line separat-
ing the three-state Potts critical sheet from the
first-order sheet which is shown by heavy dashed
lines. The three-state Potts critical surface is be-
lieved to connect to thee2Knn=0 plane at the KT
line near the origin, and at theKnnn axis until the
appearance of the critical phase. The algebraic
phases forH=0 and forT=0 are lightly shaded,
and the thin dashed lines are projection lines
added for clarity. The error margins are at most of
the same order as the thickness of the lines.

FIG. 11. The tricritical line shown asKnn versusH. The numeri-
cally determined tricritical points are shown as circles, and the solid
line represents the tricritical lattice-gas limit asKnn=−H /6
−0.014 81.
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values between these two regimes are shown by the heavy
dashed lines in Fig. 10. They fit smoothly with the results
obtained in the critical range and for the tricritical line.

V. DISCUSSION

We have determined the phase diagram of the model Eq.
(1) for Knnnù0. We locate a surface of phase transitions.
This surface divides into a three-state Potts-type critical sheet
and a first-order part. The two parts are separated by a tri-
critical line. While the determination of tricritical line be-
comes less accurate for smalluKnnu, our data suggest that it
spans the whole range −̀,Knn,0. This is in agreement
with the minimal renormalization scenario in which the tri-
critical line is a flow line leading directly from the decou-
pling point to the tricritical fixed point.

For H→`, minus-spins are excluded on nearest-neighbor
sites and the the substitutionsi =s1−sid /2 reduces the model
to a hard-hexagon lattice gas described by the reduced
Hamiltonian

Hhh/kBT = Vnno
knnl

sis j + Vnnno
fnnng

sksl − mo
m

sm, s20d

where the site variables assume valuessi =0, 1 and
Vnn→` so that nearest-neighbor exclusion applies. The
chemical potential of the lattice-gas particles depends on the
Ising parameters asm=−12Knn−12Knnn−2H, and the next-
nearest-neighbor potential asVnnn=−4Knnn. For Vnnn=0 this
model reduces to Baxter’s hard-hexagon lattice gas[21]. Ac-
cording to the analysis presented in Sec. IV, the tricritical
line persists in the lattice-gas limit. The Ising parametersC
andKnnn determine the tricritical parameters of the lattice gas
as m
=−2.644s1d and Vnnn=−0.9406s3d. Our findings may be
compared with those of Verberkmoes and Nienhuis[22] for a
model with Vnnn=0 but including additional smaller hexa-
gons. They also report a tricritical point, attributed to an

effective attraction between the hard hexagons, induced by
entropic effects associated with the small hexagons.

An Ising-type tricritical point is known to occur also in
the analogous case of the hard-square lattice gas[21,23,24].
Our result thus confirms that tricriticality is a generic prop-
erty of hard-core lattice gases with attractive next-nearest-
neighbor interactions.

Since we do not doubt the universality class of the
tricritical line, we have not explicitly determined its critical
exponents. However, we remark that the fast apparent con-
vergence of the estimated tricritical points confirms that the
values of the Potts tricritical exponentsXm andXt, as used to
solve Eqs.(6) and (9), do indeed apply.

Renormalization analysis predicts that the uniform mag-
netic field H is relevant, except for a small range 2øgR
ø9/4. Thus the planeH=0 qualifies as a possible locus of
new universality classes, in line with the existence of a criti-
cal phase such as predicted by the renormalization scenario
and confirmed numerically. We finally note that the renor-
malization equations for the KT transitions imply that the
line of KT transitions, as shown in Fig. 2 on the left-hand
boundary of the critical phase, should come in as a straight
line on the horizontal axis, in contrast with the numerical
results which display a small part with a sudden curvature.
We believe that this is a finite-size effect, explained by the
same renormalization equations, which involve the margin-
ally irrelevant temperature field parametrizing the line of KT
transitions. This scaling field generates slowly converging
finite-size corrections. This field and its associated finite-size
effects vanish atKnn=−`.
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